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Abstract

Mainstream analyses of automation often treat capital as a homogeneous input
or focus narrowly on specific capital classes, such as industrial robots. We use
matched Swedish administrative microdata linking firms, workers, and imports to
study how heterogeneous forms of capital interact with labor and firm performance.
First, we replicate the main findings of Acemoglu et al. (2020) for Sweden and
confirm that robot adoption has similar effects on firms’ value added, employment,
and workforce composition as in France. Second, we extend the empirical setting to
capture heterogeneous effects by firm size and the value of robot adoption. Third, we
apply the same framework to a broad range of disaggregated capital goods identified
at the 8-digit product level. We find that several non-robot capital types have effects
on labor and productivity comparable to those of robots, while aggregated capital
measures tend to yield weak results. Our findings suggest that although robots have
large and visible impacts on labor markets, they are not unique in their economic
function, and their interaction patterns with labor resemble those of older and more

conventional capital-embodied technologies.

I. INTRODUCTION

As Robinson (1953) noted, much of mainstream economic theory has long modeled the
factors of production, such as labor and capital, as homogeneous inputs. This simplification
can be problematic for understanding technological and distributional dynamics, since
differences in how specific types of capital and labor interact may be central to explaining
both productivity and inequality. Recent work has begun to incorporate heterogeneity in
labor, distinguishing workers by skill, occupation, or task (see, e.g., Acemoglu and Autor
(2011), Autor (2013), Autor et al. (2003), and Goos et al. (2014)). In contrast, the role of
heterogeneous capital remains relatively underexplored. The interaction between different

forms of capital and different types of labor is still poorly understood, even though it is
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likely central to explaining variation in firm performance and market dynamics. Partly this
lack of analysis can be traced to limited data availability, as most of the studies of capital
adoption use industry or country level data. With new capital-embodied technologies
emerging continuously, understanding how heterogeneous labor and capital interact is
especially relevant to the debate on automation. We ask: how do different types of capital,

including but not limited to robots, interact with labor and firm outcomes?

Whether productivity gains or displacement effects dominate ultimately determines the
impact of automation on employment and wages. Yet the literature remains divided on
which mechanism prevails. While Acemoglu et al. (2020) find that displacement effects
dominate for robot adoption in French data, Aghion et al. (2020) do not find similar
results for automation capital more broadly. The way capital is classified as “automation
capital” appears to influence these conclusions. This suggests that further empirical work
explicitly accounting for the heterogeneous nature of capital is essential to understand the

implications of automation.

In this project, we use rich Swedish administrative microdata that link firms, workers, and
import records to study the effects of capital-embodied automation on firm and worker
outcomes. In the first step, we replicate the main empirical specifications of Acemoglu
et al. (2020) and Aghion et al. (2020). In the Swedish context, we find that robot adoption,
coded as a binary variable at the firm level, is associated with an increase in value added
of about 31%, a decline in the labor share by roughly 17 percentage points, and a rise
in wage rate, defined as wage bill divided by the number of workers, and employment of
around 9% and 13%, respectively. This means that even though the labor share is falling,
the total wage bill actually increases, but value added increases more. This step assesses
how robot adoption affects firm-level outcomes and serves as a benchmark result. For
comparison, Acemoglu et al., 2020 find a 20% increase in value added, a 4 percentage
point decline in the labor share, a 10% increase in hours worked, and a 1% increase in
the hourly wage for the years 2010 to 2015. While Acemoglu et al., 2020 find an increase
in TFPR, our results are not significant for this variable. For automation capital as the
indepentend variable of interest, we do not find significant results either, except for the

outcome of the wage rate. This is broadly in line with Aghion et al., 2020.

Next, we analyze the effects of other capital goods at a disaggregated level, defined by the
8-digit product code, to place the effects of robots in perspective and explore the broader
heterogeneity of capital. This analysis reveals that many capital goods have effects similar
to or even stronger than those of robots, including not only automation equipment but
also older and more conventional types of machinery such as precision tools and transport
equipment. The focus on robots alone therefore overlooks that they represent only one
example of a broader set of capital inputs that can reshape production and employment

patterns.



Additionally, we examine the results for the disaggregated capital goods included in
automation capital in Aghion et al. (2020), and find that while the estimates on the
aggregated level are small and statistically insignficant, some of the more granular results
are sizable and statistically significant. The results from this analysis underline how aggre-
gating heterogeneous capital into one indicator can ’average away’ underlying significant

effects.

Taken together, these results emphasize the importance of taking into account a wide
array of granular capital classes in empirical work, both to put results into perspective,

and to ensure existing effects do not get averaged out by aggregation.

II. CONCEPTUAL BACKGROUND AND RELATED LITERATURE
A.  Capital heterogeneity and skill complementarity

Capital is heterogeneous in many dimensions, including its technological characteristics,
purpose in production, and the ways it interacts with labor. Understanding this hetero-
geneity is crucial, as different types of capital can have very different implications for
employment, wages, and inequality. In particular, capital may substitute for certain kinds
of labor while complementing others, which shapes both firm dynamics and the distribu-
tion of income across workers. This question lies at the core of debates on technological
change: when new capital is introduced, do workers gain through firm expansion and

productivity growth, or are they displaced as certain tasks become automated?

Hoétte et al. (2023) review the literature on technological change and its effects on labor
and find that across various categories of technology, labor-displacing effects are often
offset by scale effects. Our findings support this conclusion in the Swedish context using
firm data and granular capital classes, as we find that purchasing any type of capital is
linked to more hiring and higher wages. O’Mahony et al. (2021) show in a theoretical
model that capital heterogeneity is central to understanding the decline in the labor
share, and using industry-level OECD data, they demonstrate that different types of
capital assets affect the labor share in opposite directions. Specifically, they differentiate
between ICT and intangible capital, where the latter has a positive effect on the labor
share when it is of innovative nature. We find that the result for physical capital holds at

the disaggregated level: purchasing physical capital lowers the labor share.

Others have pointed to the role of institutions and policies in shaping the effects of
automation, for example Aghion et al. (2019), who find that robot adoption in France
between 1994 and 2014 reduced aggregate employment, with less educated workers being
more negatively affected. By replicating findings from France using Swedish data, this
paper also speaks to the difference in effects depending on policy context. In addition,
Chen (2020) also highlight the importance of capital-skill complementarity and rising

capital intensity in the goods sector for understanding structural transformation in the



United States since the 1950s. Their analysis supports the view that capital tends to
substitute for less educated workers while complementing those with higher education.
We can measure the effect on the share of skilled employees and do not find that firms hire
an increasing amount of educated workers, potentially pointing to a shift in how capital

affects different types of labor over time, or across institutional settings.

Taken together, these studies show that both the type of capital, policies, and the
composition of the workforce matter for understanding the consequences of technological
change. In this context, it remains an open question whether industrial robots and other
forms of automation represent a fundamentally new challenge for labor, or whether their
effects resemble those of earlier generations of capital accumulation. This question is
central to assessing the long-run implications of technical change for wage levels and

inequality.
B. Robots and automation

Much of the recent empirical literature on automation has focused on industrial robots as
a benchmark for studying technology adoption and its labor market consequences. Graetz
and Michaels (2018) use industry-level data from 17 countries spanning 1993 to 2007 to
examine the impact of robot adoption. They find that industrial robots are associated
with higher labor productivity and estimate that they account for about 15 percent of
aggregate productivity growth during this period. They also report higher wages and
lower output prices in industries with greater robot use, while overall employment remains

largely unaffected, though the share of workers with lower education declines.

Building on this work, Acemoglu et al. (2020) study French firm-level data and find
that robot adoption increases productivity but reduces employment and the labor share,
suggesting that displacement effects dominate over productivity-driven scale effects. In
contrast, Aghion et al. (2020) examine a broader set of automation-related capital assets
and find no such aggregate displacement effect once a wider definition of automation
capital is considered. They argue that access to international markets may moderate the

labor market consequences of automation.

These contrasting findings point to a broader question about what kinds of capital should
be considered “automation.” While robots have become a symbol of technological change,
they represent only a narrow segment of production capital. Aggregating many different
automation goods may obscure important heterogeneity across technologies and their
interactions with labor. In this study, we address this issue by first replicating the results
for robots in the Swedish context and then extending the analysis to a wider range of
capital goods. By examining capital at a disaggregated level, we assess whether robots
differ meaningfully from other forms of capital, or whether their effects reflect a more

general pattern of capital-labor interaction.



C. Firm-level adoption patterns

Dinlersoz and Wolf, 2024 use a the Survey of Manufacturing Technology (SMT) from 1991
to examine the implications of skill biased technical change as an explanation for the labor
share decline. They find that in more automated establishments, labor share is lower, and
there is a lower fraction of production workers, while workers are more productive and
receive higher wages. While they emphasize the importance of directed technical change,
the survey also reveals that the most common motivator for automation is a quality
increase. Finally, they estimate TFP using a CES setting where firms endogenously set
the weights of different production inputs by investing in technology. This estimation
shows that CD estimates underestimate TFP by not taking into account endogenous

technology choice.

Dixon et al., 2020 provide additional evidence for robot adoption being motivated by
product improvement rather than saving labor costs using data on Canadian firms between
2000 and 2015. They also find that robots increased worker turnover and total employment,
and displaced managerial work. They also found outside-hiring of managers and additional
training of employees when robots are adopted. Wang et al., 2025 us data from Chinese
listed firms and confirm the finding that robot-using companies have higher product
quality. They find that one channel for this effect is replacing low-skilled labor with a
bundle of complex robots and high-skilled labor.

Deng et al., 2024 use plant-level data on robotization in Germany between 2014 and 2018,
and establish a number of stylized facts. They find that robot use is relatively rare, even
within manufacturing (8.2% of plants). Moreover, plants that use robots are larger and
more productive and the distribution of the stock of robots is highly skewed. Ex-ante,

plant size predicts robot adoption, as is the share of low-skill labor.

Leone, 2023 connects the acquisition of manufacturing firms by multinationals to robot
adoption, and a subsequent decline in the labor share. Using Spanish manufacturing firm
data from 1990 to 2017, this channel is estimated to have contributed about 8% of the

decline in the manufacturing labor share over the sample period.

While much of the recent empirical literature on automation has focused on robots,
there is little evidence to suggest the effects of robots on the labor share, wages, and
productivity, are vastly different to the effects of other types of automation capital. One
reason for the prevalence of studies on robots is data availability, thanks to industry-level
data provided by the International Federation of Robotics (IFR). As presented above,
some estimates exist using establishment or plant level data in France. We add to this
literature by estimating the effects of robot adoption in Swedish establishment-level data
and broadening the horizon of analysis to a wide range of capital inputs. The aim of this

exercise is to (i) put into perspective the magnitude of robot estimates and (ii) understand



more deeply the heterogeneity of directed technical change.

III. DATA AND VARIABLE CONSTRUCTION

The underlying data set is provided by Statistic Sweden (SCB) and includes matched data
on firms, workers, and imports. Following Acemoglu et al. (2020), we use five years of data
in our main specification. For the years 2012 to 2016 which we use, consistent definitions
of occupations, industry, and import goods codes are available. In the following, we will

describe the data sources, processing, and variable construction.

A.  Firm data

FEK The registry FEK (foretagens ekonomi) contains firms’ financial data. It comes
from tax records and includes information on capital, labor, the wage bill, profits, revenue,
and value added. All active Swedish firms except those in the financial sector are are
included. The data is filtered to only include manufacturing firms, which corresponds to
SNI codes 10 — 33.1 We further restrict the sample to firms that show up in both years

2012 and 2016 with positive revenue, paying wages, and a positive number of employees.

The register also includes information at the establishment level (LVE). This is used to
add the commuting zone of the biggest establishment as a variable, relying on SCB’s
classification of commuting zones. This measure is based on information on workers’ home

location and location of their main employment.?

A corporate dummy is added from the corporation register KCR. We classify a firm as
part of a corporation if the firm id shows up in that register. The measure the change in
log TFPR, which is one of the outcome variables in the regressions, following Acemoglu
et al., 2020. It is defined as:

ATFPR = Alogy — N Alogl — A,Alogm — (1 — N — A\)Alogk,

where \; and ), are defined as the 2012 expenditure shares of labor and intermediates in

revenue, respectively, y is total revenue, and k is the capital stock.

Value added is constructed as revenue minus intermediate inputs. There is an alternative
measure for value added available from statistics Sweden, which adjusts for changes
in inventories, capitalized production, and some production expenses not included in

intermediates. We choose to use the 'unadjusted’ measure in accordance with how

'From 2008 onwards, the Swedish Statistical Office uses SNI2007 to classify industries. Documentation
is available via https://www.scb.se/en/documentation/classifications-and-standards/swedish-standard-
industrial-classification-sni/

2For documentation, see https://www.scb.se/hitta-statistik /statistik-efter-amne/arbetsmar
knad/utbud-av-arbetskraft/befolkningens-arbetsmarknadsstatus/produktrelaterat/fordjupad-
information/lokala-arbetsmarknader-la/ and https://www.scb.se/hitta-statistik /statistik-efter-
amne/arbetsmarknad /utbud-av-arbetskraft /registerbaserad-arbetsmarknadsstatistik-rams/produktre
laterat/Fordjupad-information/lokala-arbetsmarknader-la/
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Acemoglu et al., 2020 construct value added. Similarly, we follow Acemoglu et al., 2020
and define labor productivity as value added divided by the number of workers, and the

labor share as the share of the wage bill in value added.

B.  Worker Data
LISA The SCB registry LISA, or longitudinell integrationsdatabas, contains employment-

related administrative data for individuals aged 16 and older®. This data includes
information on individuals and matches them to their main employer. We use this
individual level information about gender, age, and occupation, to construct variables
capturing the workforce structure at the firm level. More specifically, we calculate the
number of workers, female workers, skilled workers, and the average age of employees.
Skilled workers in this context are defined as those with an occupation that requires
at least a 2-year education after graduating from a gymnasium, the Swedish equivalent
of high school. This corresponds to occupation codes starting with one, two, or three
according to the Swedish classification system for occupations (SSYK)*. Note that the
classification system was revised in 2012, effective from 2014, which did not affect the

logic by which we classify ’skilled” and "unskilled’ labor.

C.  Import Data

UHYV The UHV, which stands for utrikeshandel med varor, contains information on both
imports and exports at the country-firm-good level. Goods are classified according to the
Combined Nomenclature (CN) of the EU with 8-digit identifiers®. The data is complete
for imports from countries outside the EU, and are reported above a certain threshold for

within EU imports, which has increased over time.

For identifying capital imports, we utilize the Broad Economic Categories (BEC) intro-
duced by the UN. The BEC classification label different products as “Consumption”,
“Intermediate” or “Capital”. Within the group “Capital”, products are further divided
into “Generic” and “Specific” since 2012. Where robots are referred to, we use the HS
code “84795000 - Industrial robots, n.e.s.”. Automation capital follows the definition in
Aghion et al., 2019°.

From the import data, which we merge to the firm dataset, we construct dummies for
whether a company imported any capital between 2012 and 2016, whether it imported
robots or automation capital, as well as each 8-digit product code within the class of

capital goods. In the main regressions, the sample is restricted to capital importers.

3From 2016, the minimum age to be included in LISA is 15.

4Documentation can be found here: https://www.scb.se/dokumentation/klassifikationer-och-
standarder /standard-for-svensk-yrkesklassificering-ssyk/

°CN codes can be looked up here https://cnwebb.scb.se/?languageld=GB

6A list of Automation Technologies https://www.openicpsr.org/openicpsr/project /184641 /version/V1/
view?path=/openicpsr/184641/fcr:versions/V1/replication AEAPP-2023-1039/data/other
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D. Descriptives

This matched dataset allows us to trace how the acquisition of specific capital goods,
identified at the 8-digit CN level, relates to changes in firm performance and workforce
composition over time. We refer to the groups of capital analyzed by Aghion et al., 2020 as
automation capital, and the one in Acemoglu et al., 2020 as robots. Descriptive statistics

are summarized in table 1.

There are 16,265 manufacturing firms in our sample, of which 7,429 imported any type
of capital goods between 2012 and 2016. About 0.9% of these imported robots, and
19.8% imported automation capital. Note that there is some overlap between firms that

automate and firms that imported robots.

Comparing the characteristics of the firms in these groups at baseline, it is clear that
firms that import any type of capital are larger, whether measured in of revenue, value
added, or the number of workers. They also generate more value added per worker and
pay higher wages. Similarly, firms that automate are on average approx. 3.5 times larger
than capital importers in terms of revenue, while robot adopters are more than 26 times
the size of the average capital importer. Value added per worker and wages are higher

among firms who automate, and even higher for robot adopters.

Turning to the workforce composition, capital importers have a slightly higher share of
female workers than the average among all manufacturing firms. Robot adopters employ
23.9% women on average, while capital importers in general only have 21.8%. More sizable
differences can be observed when looking at the skill share of the labor force, where the
average among manufacturing firms is 19.2%, which increases to 29.3% among capital
importers and is 36.6% for those who purchased robots. Firms that automate are more
similar in terms of these work force characteristics to the overall group of capital importers.
Finally, it is worth noting that robot adopters have a much lower labor share, at 51.5%,

than the average manufacturing firm, which has a labor share of 70.5%.

While the overall adoption rate of robots among capital importers is less than one percent,
it is much higher within some industries. Motor vehicle manufacturing, production of iron
and steel and ferroalloys, manufacture of optical instruments and photographic equipment,
manufacture of consumer electronics, and manufacture of pipes, tubes, hollow profiles and

accessories of steel all have robot adoption rates above 4%.

Examining instead the value of robots imported per firm, the highest variation is found in
the same industries, with the exception of pipes, tubes, hollow profiles and accessories.
Instead, production of communication equipment is more varied in the value of robots

imported.

While robot adopters make up for a small share of firms, they make up for approximately



All manufacturing Capital importers Automation  Robots

n 16,265 4,667 549 68
Sales y (*) 13.966 326.608 1140.692 5743.977
Value added va (*) 5.068 125.415 469.099 2662.568
Workers 1 7.772 82.204 284.313 1156.559
va per | 596,995 920,497 951,491 1,248,167
Wage 287,747 354,765 373,252 392,321
Labor share 0.676 0.561 0.549 0.515
Skill share 0.206 0.319 0.305 0.366
Female share in 1 0.201 0.227 0.211 0.239
Robot adoption - 0.015 0.042 -
Automation - 0.118 - -

(*) In 1 million SEK.

Table 1: Summary statistics by group at baseline

Probability of automation by revenue bin Probability of robot adoption by revenue bin

o
N
o

o

N

o
!

0.025 4

Automation rate
o o
i i
1) &
L
Robot adoption rate

o
=}
a

0.00 -

-

2 3 4 5

2 3 4
Revenue quintile within industry Revenue quintile within industry

Figure 1: Adoption rates of automation capital and robots by size decile within an
industry.

17% of employment, 28% of value added, and 23% of revenue in the manufacturing sector.
Similarly, This concentration of adoption of automation capital in large firms is visualized
further in Figure 1. The graphs show the average rate of adopting automation capital and
robots, respectively, by the revenue size quintile within an industry. While the probability
of importing and automation capital increases in firm size, the concentration of robot

adoption in the top quintile is much more pronounced.

In the following sections we will turn to how firms evolve over time, depending on the

type of production capital that they import.

IV. REPLICATION: ROBOTS AND AUTOMATION CAPITAL

In this section, we present results replicating the main specification in Acemoglu et al.,
2020 in Sweden. We also run these regressions on an indicator for importing any type of
automation capital. The results are summarized in Table 2. We regress the change in

various firm characteristics between 2012 and 2016 on a dummy indicating whether the



firm has adopted either robots or automation capital, and a number of controls:
AYy = a + fAdopt; + Xjy + ps + . + €, (1)

where AY} denotes the change in a given firm outcome between 2012 and 2016, and
Adopt; is an indicator equal to one if firm f imported robots (Panel A) or automation
capital (Panel B) during this period. The vector X includes controls for initial firm size
(log employment) and log value added per worker, as well as a dummy for whether the
firm is part of a larger corporate group. p; and A, represent fixed effects for industry (at

the 3-digit NACE level) and commuting zone of the largest establishment, respectively.

Standard errors are clustered at the industry level. We also present employment-weighted
specifications to account for firm size heterogeneity. The coefficient of interest, 3, captures
the average difference in growth of the outcome variable between adopters and non-

adopters, conditional on baseline firm characteristics.

Alog(va) Alabshare Askillshare Alog(va/l) Alog(TFPR) Alog(l) Alog(w) n

A. Robots
Baseline (unweighted)
0.312 -0.174 -0.021 0.180 -0.054 0.131 0.091 68.0

Employment weighted
0.226 -0.120 -0.022 0.103 -0.032 0.122 0.062  68.0

kksk * * kK k *

B. Automation

Baseline (unweighted)
0.055 -0.032 -0.013 0.023 -0.000 0.031 0.025 549.0

Employment weighted
0.019 -0.025 -0.008 -0.018 -0.030 0.037 0.027  549.0

Table 2: Robot and Automation Effects (final)

Comparing Panel A of Table 2 to the coefficients found in Acemoglu et al., 2020, we
find overall similar effects using the Swedish data. The effects on value added, the labor
share, value added per worker, employment, and wages go in the same direction and
are significant. Quantitatively however, the effects are much more pronounced in the
Swedish data. For comparison, the coefficient for the change in value added is .204 in
the French data, while we arrive at a value of .312. Two notable departures are worth
pointing out: the skill share and the change in TFPR. For both, our results have opposite
signs compared to the French results, and they are not significant at the 95% confidence

level. We see a similar pattern after using employment weights.
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In Panel B of Table 2, we apply the same method to the adoption of automation capital.
The results for value added, the labor share, and value added per worker have the same
sign but are more muted. The other results are not significant. We interpret this as the
bundling of multiple types of heterogeneous production capital partially netting out the
aggregate effects. While they still seem to have a positive effect on scale in terms of value
added, and value added per worker, the effect on employment and wages is no longer
clear. We will come back to this point in Section C, where we run the same specification

on disaggregated categories of automation capital.

Note that adding more digits to the industry FE does not change results much, but some

cells have a very low number of observations with more FEs, affecting significance.

One key takeaway from this replication is that most of the main results are similar to
those in the French data, but stronger. This also serves as a helpful benchmark for the
following sections of this paper. At the same time, bundling multiple capital goods into
one adoption indicator seems to mute effects, possibly because of heterogeneity among
asset types within the bundle canceling each other out. This emphasizes the importance

of taking capital heterogeneity into account in this type of analysis.

V. HETEROGENEOUS CAPITAL EXTENSION

In this section, we present results from estimating the same specifications as above for all
8-digit capital goods. Note that for some figures, we only include results where both the
effect on value added and on the labor share in value added are significant. We comment
on this in the text and in the caption of each figure. We mainly focus on the results for
value added and the labor share of value added for two reasons. First, they summarize
neatly the effect on scale and the input mix between capital and labor. Second, these

benchmark results are most clearly comparable across datasets.

A.  Results for granular capital

Before interpreting the results in the light of our replication above, we will summarize the
results of the regressions when using disaggregated capital goods. Figure 2 depicts all
significant coefficients on the capital adoption dummy for the change in value added and
the labor share. Strikingly, they all have the same sign: value added increases and the
labor share decreases. This implies that production is scaled up more than labor inputs,

pointing to a substitution of labor for capital.

To understand the effect on labor more deeply, Figure 3 includes the results for the wage
rate and the number of employees. Except for one capital good, which is an outlier,
adoption of any type of capital is associated with wither wages and increased hiring. This
is in line with findings such as in Hoétte et al., 2023, who conclude that the displacement

effect is often offset by scale effects. While labor plays a less important role in the
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Figure 2: Significant results for value added and the labor share.

production process, the increased productivity and asocciated scaling up of the production

capacity leads to an increase in labor demand at the firm level.

Finally, it is worth noting that the skill share actually decreases in most of our estimations.
This implies that the additional hiring can not come from replacing low-skill labor with
capital and skilled workers. For all results so far, the sign of the relationship between
capital adoption and the outcome variable has painted a largely consistent picture across
capital type. Contrasting this are the results for productivity measures TFPR and value
added per worker. About half of the results where both value added and TFPR were

significantly different for adopters were positive, the other half negative.

B. Capital classes resembling the effects of robots

Figure 4 illustrates which categories of capital goods display effects on firm outcomes that
are most similar to those of robots. Each point represents an 8-digit capital product class,
with the estimated effect on value added on the horizontal axis and the effect on the labor
share on the vertical axis. The figure highlights a group of capital goods, such as precision
machinery, industrial control equipment, and material-handling systems, that exhibit a
similar pattern of increasing value added and reducing the labor share in quantitatively
similar magnitudes as robots. Notably, several of these goods are not directly related to
automation, including conventional machinery and transport equipment, yet they show
effects comparable to those of robots. This similarity could indicate that such capital
either plays a complementary role in automation or affects production in comparable ways.

This underscores that robots are part of a broader set of capital inputs that jointly shape
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Figure 3: Significant results for labor and wages.

firm performance and workforce composition.

This interpretation of the results is further strengthened when inspecting those capital
goods that have a stronger effect on value added and the labor share than robots. Among
these are diesel or semi-diesel engines’, various types of pumps®, ultrasound scanners, as

well as other instruments used for physical and chemical analysis®.

Taking a step back, it is also worth mentioning that all capital classes with significant
results have a negative effect on the labor share, while increasing value added. This
observation is in line with the interpretation that capital in general increases production
scale in terms of output, while displacing labor in relative terms. Whether scale or
displacement effects prevail is not immediately clear, and neither is the effect on different
types of workers. Within the group of capital goods with the strongest effects on value
added and the labor share, all significant estimated for the effect on the number of workers
and wages per worker are positive. This means that a lower labor share that goes hand in

hand with capital adoption does not necessarily imply negative effects for workers.

Overall, we find that robots do not seem to be linked to stronger effects on firm scale and

labor shares than other, more traditional types of capital classes and lab equipment.

"Specifically, those not used for the propulsion of motorized vehicles or ships, between 50 and 300 kW,
KN2012 codes 84089047, 84089061, 84089065.

8KN2012 codes 84134000, 84136069, 84141081, 84143081

9KN2012 codes 90278011, 90278091
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Figure 4: Capital classes similar to robots, significant (95% level) for both results.

C.  Granular automation capital

Turning to the effects of automation capital. Recall that the effects of this aggregated class
of capital products where not significant at the 95% level. To understand how this result
is generated, Figure 5 depicts the estimates for value added and the labor share of all the
disaggregated capital classes included in automation capital. The aggregate estimate is
marked with a yellow star. It is somewhat centered and close to zero on both axes, which

is as expected. The estimate is both economically and statistically insignificant.

Within automation capital, there are a few capital classes that generate significant
estimated for both outcomes, pictured in Figure 6. All of these have similar estimates as

robots, with one exception that has far stronger effects.!”

This illustrates how aggregating a number of capital classes into one broad group of
automation capital affects the interpretation of results in two ways. First, if capital goods
within the group have heterogeneous effects, with potentially different signs, then the
aggregate effect can be centered around a near-zero effect size, even if the underlying
capital goods have potentially significant and interesting effects. Second, the aggregation
can lead to insignificant results even if (some of) the underlying estimates would be
significant. Summarizing, the level of aggregation matters for both the effect size and its

significance, which in turn plays a role in interpreting the interaction between capital and

10This capital good is KN2012 No 84642080: "Grinding and polishing machines for working stone,
concrete, asbestos cement or similar mineral materials".
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Figure 5: Capital classes included in automation capital, regardless of significance.

labor.

D. Interpretation

In this section, we extend the previous analyses by taking a closer look at the estimated
effects of disaggregated capital classes, with two main takeaways emphasizing the impor-
tance of taking into account heterogeneity in capital. On the one hand, zooming in to one
particular capital class, like robots, can lead to a lack of context for the interpretation of
effect sizes, and an unproportionate weight being placed on that particular technology.
On the other hand, aggregating a number of capital classes into one indicator as is the
case with automation capital, can cloak significant and sizable effects going on within
the aggregated class. Both of these observations emphasize the importance of capital

heterogeneity, not just in theory, but also empirically.

VI. CONCLUSION

This paper contributes to the growing literature on automation and technological change
by examining the role of heterogeneous capital and delivering establishment-level empirical
results on capital adoption for Sweden. Using matched administrative data, we replicate
established findings on robot adoption and extend the analysis to a broader set of capital
goods. Our results show that robots have sizable effects on firms’ value added, employment,
but they are not unique in this regard. Several other types of capital, including older and
more conventional machinery, display similar or even stronger effects on firm outcomes

and workforce structure. Moreover, we show how aggregating capital classes into broader
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Figure 6: Capital classes included in automation capital, significant (95% level) for both
results.

groups prior to running empirical analyses can cloak results at the granular level.

These results can inform both research and policy. For researchers, our findings highlight
the importance of accounting for heterogeneity in capital when studying technology
adoption and labor market outcomes. For policymakers, the evidence suggests that
policies promoting skill development or supporting workers affected by automation should
consider the wide range of technologies that shape firms’ demand for labor, not just

industrial robots.
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APPENDIX

A. Additional regression results

Alog(y) Alabshare(y) Alog(y/l) Alog(l) Askillshare Alog(if) Alog(age) n

A. Robots

Baseline (unweighted)
0.195 0.000 0.064 0.131 -0.000 0.088 -0.011 68.0

*k *

Employment weighted
0.149 0.004 0.026 0.122 -0.012 0.102 0.001 68.0

* ok ok *

B. Automation

Baseline (unweighted)
0.044 -0.002 0.013 0.031 0.065 0.002 0.003  549.0

kk

Employment weighted
0.023 0.002 -0.014 0.037 0.051 0.026 -0.002  549.0

Table 3: Robot and Automation Effects (additional outcomes)

B. Additional Figures 8-Digit Capital Product Results
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Figure 7: All types of capital, all results.
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Figure 10: Automation capital, all results.
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Figure 11: Automation capital, at least one significant result.
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