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Abstract

Inflation exhibits substantial persistence in the data, yet the standard New Keyne-

sian Phillips Curve (NKPC) fails to generate this persistence without resorting to ad-hoc

assumptions like inflation indexation. This paper demonstrates that menu-cost models

with state-dependent pricing naturally produce inflation persistence consistent with em-

pirical evidence. The key insight is that menu-cost models feature both intensive and

extensive margins of price adjustment. In response to shocks to the growth rate of nom-

inal demand, the intensive margin generates the standard marginal cost channel as in

the NKPC, whereas the extensive margin generates history dependence that is captured

by the lagged inflation rate. Using a calibrated menu-cost model with idiosyncratic pro-

ductivity and stochastic adjustment costs, we show that when nominal demand growth

is autocorrelated (as in the data), firms optimally delay price adjustments, generating

history-dependent inflation dynamics. In Phillips Curve regressions, lagged inflation ex-

hibits a coefficient of 0.50 when controlling for expected marginal costs alone—consistent

with empirical estimates. However, this coefficient drops to 0.05 when we include lagged

nominal demand growth, revealing that the persistence primarily stems from the ex-

tensive margin channel. Our findings suggest that inflation persistence emerges endoge-

nously from firms’ optimal price-setting behavior under menu costs, without invoking

the Lucas critique concerns associated with mechanical indexation assumptions.
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1 Introduction

The dynamics of inflation lie at the heart of monetary economics and policy design. Cen-

tral banks worldwide base their decisions on models of how inflation responds to economic

conditions, making the accurate characterization of inflation persistence crucial for policy

effectiveness. The recent post-COVID inflation surge and subsequent debate between ”team

transitory” and ”team permanent” has underscored how different views about inflation persis-

tence can lead to dramatically different policy prescriptions. Yet despite decades of research,

a fundamental puzzle remains: while inflation exhibits substantial persistence in the data, our

workhorse model—the New Keynesian Phillips Curve—cannot generate this persistence from

its microfoundations.

The New Keynesian Phillips Curve, derived from Calvo (1983) pricing frictions, posits that

current inflation depends on current and expected future real marginal costs. This elegant

relationship, while theoretically appealing, suffers from a critical empirical failure: it is purely

forward-looking. Past inflation rates and past economic conditions have no direct effect on

current inflation once we control for current and future marginal costs. As a result, inflation

in the NKPC inherits its persistence solely from the persistence of real marginal costs. Given

that empirical estimates consistently find inflation persistence well beyond what marginal cost

persistence can explain (Fuhrer, 2010), and that recent evidence suggests an increasingly flat

Phillips Curve with inflation largely decoupled from real activity (Hazell et al., 2022), the

model’s ability to match inflation dynamics appears fundamentally limited.

The literature has responded to this shortcoming primarily through ad-hoc fixes. The most

common approach, pioneered by Christiano et al. (2005), assumes that firms mechanically in-

dex their prices to past inflation when unable to optimize. While this generates the desired

persistence, it does so at significant cost: the indexation assumption lacks microeconomic

foundation, makes welfare analysis problematic, and falls prey to the Lucas critique. As infla-

tion dynamics are precisely what monetary policy seeks to influence, assuming a mechanical

backward-looking component undermines the model’s usefulness for policy analysis.

This paper demonstrates that menu-cost models naturally generate inflation persistence

without resorting to ad-hoc assumptions. The crucial difference from Calvo pricing is that

menu-cost models feature state-dependent rather than time-dependent price adjustment. This

creates both an intensive margin (how much firms adjust prices) and an extensive margin

(whether and when firms adjust prices). We show that the extensive margin, which captures

firms’ endogenous timing decisions, fundamentally alters the Phillips Curve relationship. It

captures both the change in the overall probability of price adjustment and the changes in the

probability to increase or decrease the price, respectively (Caballero and Engel, 2007).1

1This definition differs from the definition in Klenow and Kryvtsov (2008); Midrigan (2011) who restrict
the extensive margin to changes in the overall price adjustment probability.
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Importantly, when nominal demand growth is autocorrelated—as it is in the data (Naka-

mura and Steinsson, 2010)—this generates endogenous inflation persistence. Following a

demand shock, forward-looking firms recognize that current demand changes signal future

changes in the same direction. In a menu-cost model, firms can optimally delay adjustment

since they retain the option to adjust at any future date by paying the fixed cost. This ”wait-

and-see” behavior, first emphasized by Midrigan (2006), breaks the extreme front-loading of

inflation responses that characterizes the NKPC. An initial demand decrease leads to a small

inflation decline, followed by larger declines as more firms find it optimal to adjust—creating

the autocorrelation in inflation that we observe in the data.

We formalize this intuition using a quantitative menu-cost model calibrated to match

micro-price facts. The model features heterogeneous firms facing idiosyncratic productivity

shocks and stochastic price adjustment costs, following Midrigan (2011). We first establish

that our calibration successfully replicates key moments of the price change distribution and

the behavior of both intensive and extensive margins documented by Alvarez et al. (2019). Our

main results come from estimating Phillips Curve regressions on model-simulated data. When

we estimate the standard NKPC specification—regressing inflation on expected discounted

marginal costs and lagged inflation—we find a coefficient of 0.50 on lagged inflation, squarely

within the range of empirical estimates. This demonstrates that menu-cost models can gen-

erate substantial inflation persistence even when controlling for the marginal cost channel.

However, when we add lagged nominal demand growth to this regression, the coefficient on

lagged inflation drops to 0.05, while nominal demand growth exhibits a large and significant

coefficient. This reveals that the apparent inflation persistence in the NKPC specification

actually reflects omitted variable bias: lagged inflation proxies for the history-dependence cre-

ated by the extensive margin, but this information is better captured by nominal demand

growth itself.

We verify the robustness of these findings across multiple specifications. Following the

instrumental variables approach of Hazell et al. (2022), we continue to find that nominal

demand growth drives out the significance of lagged inflation. Similarly, when estimating

hybrid Phillips Curves à la Gali and Gertler (1999), the same pattern emerges. The consis-

tency across specifications reinforces our main message: menu-cost models generate inflation

persistence through the extensive margin channel, not through mechanical backward-looking

behavior.

Our findings relate to but differ from recent work by Auclert et al. (2024) (hence-

forth, ARRS), who show that menu-cost models can be approximated by a single-equation

Phillips Curve under certain conditions. While they focus on permanent level shocks to

nominal demand, we emphasize that autocorrelated growth shocks—the empirically relevant

case—fundamentally change the inflation dynamics. The persistence of demand growth gives

firms stronger incentives to delay price adjustment, breaking the front-loading that would
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otherwise make menu-cost models observationally similar to the NKPC.

The rest of the paper is structured as follows. Section 2 presents our menu-cost model

with idiosyncratic productivity and idiosyncratic fixed adjustment costs. Section 3 presents

the calibration and computational strategy. The computational method is laid out in Section

3.2 and builds on the sequence-space method developed by Boppart et al. (2018) and extended

in Auclert et al. (2021). Section 3.1 follows the calibration strategy in Midrigan (2011) and

establishes the good model fits including key moments of the price distribution and the ob-

served behavior of the intensive and the extensive margin (Alvarez et al., 2019). Our results

are presented in Section 4. Finally, section 5 concludes.

2 Model

We describe a state-dependent pricing model with idiosyncratic productivity shocks and

stochastic price adjustment costs. Our main focus is on the firm side to understand how

exogenous aggregate nominal demand translates into inflation. The firm model is therefore

quite detailed whereas the household model is kept quite simple. The main purpose of includ-

ing the household sector is to endogenously derive flexible wages which equal marginal costs

and to obtain the demand schedule which firms take as given. We first describe the household

sector before describing the firm side.

2.1 Households

We assume a representative household with preferences over consumption {ct}∞t=0 and hours

{ht}∞t=0,

∞∑
t=0

βtu(Ct, ht) (1)

Households consume differentiated goods ct(i) at a price pt(i) indexed by i ∈ [0, 1]. The

composite consumption Ct is assumed to be a Dixit-Stiglitz aggregator of differentiated goods

ct(i),

Ct =
[ ∫ 1

0

ct(i)
ϵ−1
ϵ

] ϵ
ϵ−1

. (2)

Each period the household chooses ct(i) at a price pt(i) to maximize utility (1) subject to

the budget constraint ∫ 1

0

pt(i)ct(i)di ≤ Wtlt +Πt, (3)

where Πt is distributed profits and Wt is the nominal wage.
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This requires that household demand for each good i is

ct(i) =
(pt(i)

Pt

)−ϵDt

Pt

,

where

Pt =
[ ∫ 1

0

pt(i)
1−ϵ

] 1
1−ϵ

(4)

is the price index and total nominal expenditures satisfies

PtCt =

∫ 1

0

pt(i)ct(i)di, (5)

Households’ hours choice ht satisfies

Wt

Pt

=
uh(ct, ht)

uc(ct, ht)
.

2.2 Firms

There is a measure one of firms indexed by i ∈ [0, 1] producing differentiated goods. Firm i hires

labor nt(i, z) to produce output with idiosyncratic productivity zit and aggregate productivity

Zt,

yt(i, z) = zitZtnt(i, z).

A firm i ∈ [0, 1] with price pt(i) faces demand

y(pt(i), Pt, Dt) :=
(pt(i)

Pt

)−ϵDt

Pt

,

taking aggregate nominal demand Dt and the price level Pt as given. The nominal cost of

producing yt(i) units of real output is

Ptmc(
Dt

Pt

)
yt(i)

zit
,

where mct = MC(Dt

Pt
) is real marginal costs, which depends on real aggregate demand Dt/Pt

and are thus common to all firms. Since labor is the only input into production, real marginal

cost equals the real wage,

MC(
Dt

Pt

, Zt) =
Wt

Pt

1

Zt

=
−uh(Ct, ht)

uc(Ct, ht)

1

Zt

=
−uh(

Dt

Pt
, Dt

Pt

1
Zt
)

uc(
Dt

Pt
, Dt

Pt

1
Zt
)

1

Zt

,
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where Wt

Pt
is the hourly wage to produce Zt units of output and taking into account that in

equilibrium Ct =
Dt

Pt
and ht =

Dt

Pt

1
Zt
. In quantitative analysis we assume that

u(ct, ht) =
c1−σ
t

1− σ
− h1+φ

t

1 + φ
,

and thus obtain for marginal costs,

MC(
Dt

Pt

, Zt) =
(Dt

Pt

1
Zt
)φ

Dt

Pt

−σ

1

Zt

= (
Dt

Pt

)φ+σ(
1

Zt

)1+φ

Disutility of labor depends on own output

MC(yti,
Dt

Pt

, Zt) =
((pt(i)

Pt
)−ϵ Dt

Pt

1
ztiZt

)φ

Dt

Pt

−σ

1

ztiZt

= (
Dt

Pt

)φ+σ(
1

ztiZt

)1+φ(
pt(i)

Pt

)−ϵφ

We set out to rewrite real profits as a function of real variables. A firm’s state is its (nom-

inal) price p, its productivity z, aggregate nominal demand D, and the aggregate price level

P . Lower-case variables denote firm-specific variables, upper-case denote aggregate variables.

The period t nominal profit of the firm is given by

Π(pt, zt, Pt, Dt, Zt) =

(
pt
Pt

)1−ϵ

Dt −MC

(
Dt

PtZt

)(
pt
Pt

)−ϵ
Dt

ztZt

.

and real profits are given by

Π(pt, Pt, Dt, Zt)

Pt

=

(
pt
Pt

−MC

(
Dt

PtZt

)
1

ztZt

)(
pt
Pt

)−ϵ
Dt

Pt

.

Define the firm-specific markup by µt =
pt/Pt

MC(Dt/(PtZt))/(ztZt)
. We can the rewrite real profits as

Π(µt, zt, Dt/Pt, Zt)

Pt

= (µt − 1)µ−ϵ
t zϵ−1

t︸ ︷︷ ︸
idiosyncratic

×
(
MC

(
Dt

PtZt

))1−ϵ
Dt

Pt

Zϵ−1
t︸ ︷︷ ︸

aggregate

.

We postulate that the firm can change its price (prior to production) if paying a fixed

cost zϵ−1
t εt where εt is an idiosyncratic shock drawn each period. We write the firm problem

recursively. Productivity is evolving according to a random walk in logs, zt+1 = ηt+1zt.

The recursive formulation of the risk-neutral profit-maximizing firm’s problem, under a
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perfect-foresight path for aggregate variables, is described by

V noadj
t (µ, z) = (µ− 1)µ−ϵzϵ−1 × (MCt)

1−ϵ Dt

Pt

Zϵ−1
t + βEVt+1(µ

′, z′)

s.t. z′ = η′z

µ′ = η′
Pt

Pt+1

MCt

MCt+1

Zt+1

Zt

µ

V adj
t (µ, z|ε) = max

µ∗
(µ∗ − 1)(µ∗)−ϵzϵ−1 × (MCt)

1−ϵ Dt

Pt

Zϵ−1
t − zϵ−1ε+ βEVt+1(µ

′, z′)

s.t. z′ = η′z

µ′ = η′
Pt

Pt+1

MCt

MCt+1

Zt+1

Zt

µ∗

Vt(µ, z|ε) = max{V noadj
t (µ, z), V adj

t (µ, z|ε)}
Vt(µ, z) = Eε [Vt(µ, z|ε)]

Since the problem is homothetic in z, we can eliminate z as a state variable. We guess and

verify that all value functions satisfy V (µ, z) = v(µ)zϵ−1:

vnoadjt (µ) = (µ− 1)µ−ϵ × (MCt)
1−ϵ Dt

Pt

Zϵ−1
t +

βE
[
(η′)ϵ−1vt+1

(
η′

Pt

Pt+1

MCt

MCt+1

Zt+1

Zt

µ

)]
vadjt (µ|ε) = max

µ∗
(µ∗ − 1)(µ∗)−ϵ × (MCt)

1−ϵ Dt

Pt

Zϵ−1
t − ε

+ βE
[
(η′)ϵ−1vt+1

(
η′

Pt

Pt+1

MCt

MCt+1

Zt+1

Zt

µ∗
)]

vt(µ|ε) = max{vnoadjt (µ), vadjt (µ|ε)}
vt(µ) = Eε [vt(µ|ε)]

2.3 Equilibrium

As in Midrigan (2011) we assume that nominal spending equals exogenous nominal demand

Dt,

Dt = PtCt =

∫ 1

0

pt(i)ct(i)di

The aggregate price level, through the Dixit-Stiglitz aggregator, is given by

Pt =

(∫
p1−ϵ
it di

)1/(1−ϵ)

=

(∫
(µitPtMCt/(ztZt))

1−ϵ di

)1/(1−ϵ)

=(∫
µ1−ϵ
it zϵ−1

it

)1/(1−ϵ)
PtMCt

Zt
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so we get the equilibrium condition that real marginal cost times the economy-wide markup

equals one,

1 =

(∫
µ1−ϵ
it zϵ−1

it di

)1/(1−ϵ)
MCt

Zt

. (6)

Equivalently, aggregation of quantities yields the equilibrium condition(∫
pt(i)

1−ϵdi

)1/(ϵ−1)

= Pt

since it is equivalent to the equilibrium conditions that supply, Yt, equals demand, Dt/Pt,

Dt/Pt = Yt =

(∫
yt(i)

(ϵ−1)/ϵdi

)ϵ/(ϵ−1)

=

(∫ (
pt(i)

−ϵP ϵ−1
t Dt

)(ϵ−1)/ϵ
di

)ϵ/(ϵ−1)

=

=

(∫
pt(i)

1−ϵdi

)ϵ/(ϵ−1)

P ϵ−1
t Dt.

3 Computation and Calibration

3.1 Calibration

The calibration strategy follows Midrigan (2011). The model period is a week. We choose the

idiosyncratic firm productivity shock and stochastic (exponential) adjustment cost parameters

to match key steady state targets: the frequency of (regular) weekly price changes, 2.9%, and

the distribution of the size of (regular) price changes. We use the same targets as in Midrigan

(2011): the mean size of regular price changes is 11%, 10% of prices changes are less than 3

percent, 25% of prices changes are less than 5 percent, 50% of price changes are less than 9

percent, 75% of price changes are less than 13 percent and 90% of prices changes are less than

21 percent. Figure 1 shows these 5 data moments (blue dots) and the distribution of prices

changes in our calibrated model, confirming that we are able to match all five data targets.

Figure 1 also shows that the distribution of prices has no mass points. We choose σ = 1 to be

balanced-growth path consistent so that we can also consider permanent aggregate technology

shocks. We set φ = 1 consistent with a Frisch elasticity of 0.5.

Following Alvarez et al. (2019) inflation satisfies the accounting identity

1 + π = λ+∆+ − λ−∆−,

where λ+ is the frequency of price increases, λ− is the frequency of price decreases, ∆+ is the

average size of price increases and ∆− is the average size of price decreases. Total differentiation

inflation with respect to demandDt delivers a decomposition into an extensive and an intensive
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Figure 1: Distribution of prices changes in the model (line) and in the data (5 dots)

margin,
∂∆1 + πt

∂∆Dt

=
∂λ+

∂∆Dt

∆+ − ∂λ−

∂∆Dt

∆−︸ ︷︷ ︸
Extensive Margin

+λ+ ∂∆+

∂∆Dt

− λ− ∂∆−

∂∆Dt

∆−︸ ︷︷ ︸
Intensive Margin

.

The extensive margin is positive since ∂λ+

∂∆Dt
> 0, ∂λ−

∂∆Dt
< 0, ∆+ > 0 and ∆− < 0. Defining

λ as the overall frequency of price changes, the extensive margin can be further decomposed

into the selection effect and changes in the total frequency of price changes,

∂λ+

∂∆Dt

∆+ − ∂λ−

∂∆Dt

∆− =
∂(λ+ − λ)

∂∆Dt

∆+ − ∂(λ− − λ)

∂∆Dt

∆−︸ ︷︷ ︸
Selection

+
∂λ

∂∆Dt

(∆+ −∆−)︸ ︷︷ ︸
Total Frequency

By the same arguments as above, the selection effect is positive. In response to an increase

in nominal demand growth, the probability to increase the price, λ+ increases where the

probability to decrease the price, λ− increases. The selection effect is thus positive even if the

overall frequency of price changes is constant, ∂λ
∂∆Dt

= 0.

In general both components of the extensive margin are positive, although certain assump-

tion imply ∂λ
∂∆Dt

= 0 for small changes in demand (Alvarez et al., 2019). In particular, both

components are positive in response to large shocks as non-linear effects kick in.

∂∆1 + πt

∂∆Dt

=
∂(λ+ − λ)

∂∆Dt

∆+ − ∂(λ− − λ)

∂∆Dt

∆− +
∂λ

∂∆Dt

(∆+ −∆−) + λ+ ∂∆+

∂∆Dt

− λ− ∂∆−

∂∆Dt

∆− Linear

+
∂2(λ+ − λ)

∂2∆Dt

∆+ +
∂2λ

∂2∆Dt

∆+ + 2
∂2λ+

∂2∆Dt

∂∆+

∂∆Dt

+ λ+ ∂2∆+

∂2∆Dt

Second Order (+)

− ∂2(λ− − λ)

∂2∆Dt

∆− − ∂2λ

∂2∆Dt

∆− − 2
∂2λ−

∂2∆Dt

∂∆−

∂∆Dt

+ λ− ∂2∆−

∂2∆Dt

Second Order (-)

+ . . . ThirdOrder,
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where the second derivative of the total frequency of price changes, ∂2λ
∂2∆Dt

, is positive.

Comparing the steady-state properties of the intensive and extensive margins to empirical

results in Alvarez et al. (2019) shows that our calibrated model captures both margins well.

Concretely, we conduct this experiment: Increase steady-state growth rate of nominal demand

to increase the steady-state inflation rate while keeping all other parameters unchanged. Fig-

ures 2 shows the size of price increases ∆+ and size of price decreases ∆− as a function of the

annual inflation rate in the data and in the model. Figures 3 shows the monthly frequency of

prices increases λ+, prices decreases λ− and of all price changes, λ+ + λ− as a function of the

annual inflation rate in the data and in the model. Figures 3 shows the extensive margin, the

selection effect λ+ − λ− and the total frequency, λ+ + λ−. The Figures lead to the conclusion

that the model replicates the data well.
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Figure 2: Intensive margin in the data and the model: Size of price increases ∆+ and size of
price decreases ∆−. Left panel: data. Right panel: model

3.2 Computation Method

We solve the model using standard methods. We solve for the firm price setting problem using

dynamic programming. In order to solve for the steady state, we discretize the state space

and simulation the idiosyncratic shocks via non-stochastic simulation following Young (2010).

To deal with the random walk shocks for productivity, we divide through by idiosyncratic

productivity and express the cross-sectional distributions in terms of mark-up gaps (current

markup relative to desired markup). To compute aggregate statistics, we then integrate this
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distribution based on the permanent productivity neutral measure, following the method of

Harmenberg (2023).
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4 Results

This Section presents our main results on the response of the calibrated model to shocks to

nominal demand growth ∆Dt. We linearize model with small MIT-shocks in sequence space

(Boppart et al., 2018; Auclert et al., 2021). We assume that the weekly process for nominal

demand growth is autocorrelated,

∆Dt = ρwD∆Dt−1 + ϵDt ,

where ρwD = 0.95 matches the autocorrelation of nominal demand at the quarterly frequency

of ρD = 0.5 (Nakamura and Steinsson, 2010; Midrigan, 2011) To explain our results and to

relate to Auclert et al. (2024) we also consider permanent level shocks (ρwD = 0). We simulate

the economy to obtain weekly model generated data as in Midrigan (2011) and implement

quarterly Phillips curve regressions consistent with frequency typically found in empirical

studies. Before showing the Phillip curve regressions, we first present impulse responses of

inflation and its driving forces so as to explain the model mechanisms.

4.1 Impulse Responses

We first show the weekly impulse responses to a negative demand shock ϵt < 0 of inflation

pit, marginal costs mct and the discounted sum of marginal costs,
∑T

k=0 mct+k in Figure 5.

The left panel shows the three variables when the first element is normalized to −1 and the

right panel shows the best (affine-)linear fit of mct and
∑T

k=0 mct+k to the inflation rate. It is

evident that neither marginal costs nor the discounted sum of marginal costs can fully explain

the inflation rate. This is equivalent to an R2 lower than in the regressions underlying the

right panel and assigns a role for the lagged inflation rate. Indeed the regression

πt = c0 + κmct + γπt−1 (7)

delivers a coefficient απ = 0.7828 on lagged inflation. Likewise, the regression

πt = c0 + κEt

T∑
k=0

mct+k + γπt−1 (8)

yields a coefficient απ = 0.2907.2

The shape of the impulse responses are consistent with the regression results. The inflation

rate response is U-shaped whereas the response of
∑

mc shows the front-loading properties

known from New Keynesian Phillips Curves. The strongest response is observed on impact and

then gradually dies out. Clearly, a front-loaded curve cannot perfectly fit a U-shaped curve.

2This regression uses the correct model expectations, rendering Et

∑T
k=0 mct+k a Period t variable which

can be included in the regression.
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The reason for the U-shape is the muted front-loading in menu-cost models as emphasized

in Midrigan (2006). Firms can delay the price adjustment since they know that prices can

always be adjusted at a fixed cost. The incentive to delay is strengthened if the growth rates

of demand are autocorrelated. Firms are then less inclined to adjust their prices immediately

at the time of the initial shock since they know that demand will further decrease in the

future. It can then be profitable to wait and adjust the price later. In terms of inflation

persistence, this means that an initial decrease in inflation is followed by a larger decrease

in the next period, implying autocorrelation in inflation rates not captured by mc or
∑

mc.

Figure 6 replicates the same exercise but for ρD = 0, showing that this conclusion depends on

the autocorrelation in nominal growth rates. The left panel again shows the three variables

when the first element is normalized to −1 and the right panel shows the best (affine-)linear

fit of mct and
∑T

k=0mct+k to the inflation rate. Now, the three curves, π, mc and
∑

mc are

almost on top of each other. Correspondingly, the regression (7) for mc and regression (8) for∑
mc deliver smaller coefficients on lagged inflation, απ = 0.127 for mc and απ = 0.065 for∑
mc. The permanent shock in contrast to the autocorrelated growth shock does not induce

incentives to delay price adjustments so that the impulse response has the same front-loading

shape as the NKPC. Auclert et al. (2024) reach the same conclusion for the same permanent

level shock, establishing that the difference in results is due to our autocorrelated growth rate

shocks which break the extreme front-loading in the NKPC.

Figure 5: Weekly IRFs ρD = 0.5

Recall that λ+ is the frequency of price increases, λ− is the frequency of price decreases,

∆+ is the average size of price increases and ∆− is the average size of price decreases. Note

that that both ∆+ and ∆− are positive numbers. A subscript ss means the steady-state value

and a superscript t means time (since shocks in the IRF)

13



Figure 6: Weekly IRFs ρD = 0

Table I: Main Regression Results∑
mc πt−1 ∆Dt−1

Calvo Specification 0.0027 0.4994
(0.0000) (0.0069)

Full Specification 0.0016 0.0529 7.0428
(0.0000) (0.0065) (0.0797)

Standard errors in parentheses.

4.2 Phillips Curve Results

We now first implement the Calvo specification of the Phillips Curve regression,

πt = κ
∑

E[βkmct+k] + γπt−1 + νt, (9)

on our simulated data. The estimate coefficient γ is the parameter of interest as it describes

the inflation persistence taking into account the NKPC determinant
∑

mc. We run regression

which assume that all variables are measured consistently with the model. In particular the

expectation of future marginal costs use the model expectations and are thus a Period t

variable which can therefore be included in the regressions. We consider specifications which

resemble approaches used in empirical work in Section 4.3 below. The first row of Table I shows

that our model delivers a large coefficient of lagged inflation rate, γ = 0.4994. The inflation is

persistence in the model is in the range of empirical estimates although we control for
∑

mc

in the regression. The autocorrelation of inflation is close to 0.8. The coefficient on
∑

mc is

positive consistent with the theory model and small consistent with empirical evidence.
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The inflation persistence captures the history dependence of price setting and is largely

muted if we control for lagged nominal demand growth, a driving force in the model. Adding

the lagged nominal demand growth rate to the previous regression,

πt = κ
∑

E[βkmct+k] + γπt−1 + δ∆Dt−1 + νt, (10)

confirms this. The second raw of Table I shows that the coefficient of the lagged inflation

rate is smaller by an order of magnitude and close to zero, γ = 0.0529. At the same time, we

estimate a large and significant coefficient on lagged ∆Dt−1. Nominal demand growth as the

driving force in the model largely captures the history dependence and as a result reduces the

coefficient on lagged inflation, which does not provide substantial information about history

not already captured by nominal demand growth. Since nominal demand growth and marginal

costs are positively correlated, the coefficient on
∑

mc is lower in the second row than in the

first row of Table I .

The key conclusions are

• The New Keynesian specification of the Phillips curve delivers a positive coefficient on∑
mc and a sizeable coefficient on lagged inflation

• Adding nominal demand growth yields a positive coefficient and significantly reduces

the coefficient on lagged inflation.

4.3 Other Specifications of Phillips Curve regressions

The regressions underlying our main results assume that we can observe all model variables

without error. In this Section we consider specifications which resemble approaches used in

empirical work. We first follow Hazell et al. (2022) (HHNS)and instrument the expected

discounted sum of marginal cost since expectations are not included in their dataset. Our

instrumental variable regression replicates their approach. We implement the regression:

πt = κ
t+20∑
s=t

βs−tmcs + γπt−1 + νt
∑t+20

s=t βs−tmcs instrumented with mct, (11)

where we follow HHNS and truncate the sum after 20 quarters. The first row of Table II shows

again that inflation is persistent with a coefficient γ = 0.3663. Using instruments instead of

the correct model variables as in Table I leads to a larger coefficient on
∑

mc and a smaller

but sizeable coefficient on lagged inflation, which is within the range of empirical estimates.

As in the main results, adding lagged nominal growth as an additional regressor,

πt = κ

t+20∑
s=t

βs−tmcs + γπt−1 + δ∆Dt−1 + νt,
∑t+20

s=t βs−tmcs instrumented with mct, (12)
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Table II: New Keynesian Phillips Curve Results: Hazell et al. (2022) Approach∑
mc πt−1 ∆Dt−1

Calvo Specification 0.0040 0.3663
(0.0077) (0.0084)

Full Specification 0.0025 0.0896 5.3829
(0.0000) (0.0076) (0.0997)

Standard errors in parentheses.

Table III: New Keynesian Hybrid Phillips Regression Results

mct πt−1 Etπt+1 ∆Dt−1

Calvo Specification 1.0786 0.3529 0.3042
(0.0243) (0.0065) (0.0051)

Full Specification 0.4614 0.0533 0.2764 6.0622
(0.0157) ((0.0054) (0.0051) (0.0751)

Standard errors in parentheses.

reduces the coefficient of lagged inflation, γ = 0.0896. Nominal demand growth again has a

large and sizeable coefficient. Using the approach in HHNS delivers the same conclusion as the

benchmark regression: A large coefficient on lagged inflation if only the instrumented marginal

cost term is included and adding nominal demand growth reduces the coefficient close to zero.

We also estimate a hybrid Phillips curve as in Gali and Gertler (1999) which describes

inflation as a function of three determinants: past inflation, current real marginal costs and

expected future inflation.3 Again, we confirm our main findings. Lagged inflation matters in

the regression including only real marginal costs, γ = 0.3529 and becomes unimportant when

nominal demand growth is included as a regressor, γ = 0.0533.

5 Conclusion

This paper finds that menu-cost models can generate inflation persistence in line with empirical

evidence, in contrast to the standard New Keynesian model. The reason is that while the New

3The specification follows Auclert et al. (2024) and adds an i.i.d. term to marginal cost to avoid multi-
collinearity issues.

πt = κmct + γπt−1 + ζEπt+1 + ϵt,
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Keynesian Phillips Curve (NKPC) posits a one-to-one relationship between marginal cost

(gaps) and inflation, menu-cost models decouple inflation from real activity. Nominal and

marginal cost (gaps) determine the inflation rate so that inflation can inherit its persistence

from nominal demand in menu-cost models whereas real marginal costs is the only source of

persistence in the NKPC.

Future work will explore whether the inflation persistence in menu-cost models deliver the

same implications as the New Keynesian model, for example imply a “disinflationary boom”

(Ball, 1994). A related important question is about the optimal policy in models with inflation

persistence. Do they differ from the prescriptions of the New Keynesian model? How does an

optimal disinflationary policy look like? It is conceivable that the optimal policy should address

the source of the persistence, that it differs from conventional recommendations and that the

answer depends on the source of the persistence.
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